Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Tissue Engineering and Regenerative Medicine ; (6): 587-593, 2017.
Article in English | WPRIM | ID: wpr-646589

ABSTRACT

Human breast milk stem cells (hBSCs) contain a population of cells with the ability to differentiate into various cell lineages for cell therapy applications. The current study examined the differentiation potential of hBSCs into hepatocytes- like cells. The cells were isolated from the breast milk and were treated with hepatogenic medium containing hepatocyte growth factor, insulin-like growth factor and dexamethasone for 7 days subsequently; Oncostatin M was added to the culture media. RT-PCR and immunocytochemistry were performed to detect the hepatogenic markers. The glycogen storage and the ability of the cells to absorb and release indocynanin green were also tested. The data showed that most of the differentiated cells formed cell aggregates after the 30th day, with more cells accumulated to form spheroids. RT-PCR revealed the expression of the hepatic nuclear factor, albumin, cytokeratin 18 and 19, cytochrome P2B6, glucose-6-phospahtase and claudin. The functional assays also showed glycogen storage and omission of indicynine green. Our study demonstrated hBSCs are novel population that can differentiate into hepatocyte-like cells.


Subject(s)
Humans , Breast , Cell Culture Techniques , Cell Lineage , Cell- and Tissue-Based Therapy , Culture Media , Cytochromes , Dexamethasone , Glycogen , Hepatocyte Growth Factor , Hepatocytes , Immunohistochemistry , Keratin-18 , Mesenchymal Stem Cells , Milk, Human , Oncostatin M , Stem Cells
2.
Tissue Engineering and Regenerative Medicine ; (6): 443-452, 2017.
Article in English | WPRIM | ID: wpr-655770

ABSTRACT

Both mature and stem cell-derived hepatocytes lost their phenotype and functionality under conventional culture conditions. However, the 3D scaffolds containing the main extracellular matrix constitutions, such as heparin, may provide appropriate microenvironment for hepatocytes to be functional. The current study aimed to investigate the efficacy of the differentiation capability of hepatocytes derived from human Wharton's jelly mesenchymal stem cells (WJ-MSCs) in 3D heparinized scaffold. In this case, the human WJ-MSCs were cultured on the heparinized and non-heparinized 2D collagen gels or within 3D scaffolds in the presence of hepatogenic medium. Immunostaining was performed for anti-alpha fetoprotein, cytokeratin-18 and -19 antibodies. RT-PCR was performed for detection of hepatic nuclear factor-4 (HNF-4), albumin, cytokeratin-18 and -19, glucose-6-phosphatase (G6P), c-met and Cyp2B. The results indicated that hepatogenic media induced the cells to express early liver-specific markers including HNF4, albumin, cytokeratin-18 and 19 in all conditions. The cells cultured on both heparinized culture conditions expressed late liver-specific markers such as G6P and Cyp2B as well. Besides, the hepatocytes differentiated in 3D heparinized scaffolds stored more glycogen that indicated they were more functional. Non-heparinized 2D gel was the superior condition for cholangiocyte differentiation as indicated by higher levels of cytokeratin 19 expression. In conclusion, the heparinized 3D scaffolds provided a microenvironment to mimic Disse space. Therefore, 3D heparinized collagen scaffold can be suggested as a good vehicle for hepatocyte differentiation.


Subject(s)
Humans , Antibodies , Collagen , Collagen Type I , Constitution and Bylaws , Extracellular Matrix , Fetal Proteins , Gels , Glucose-6-Phosphatase , Glycogen , Heparin , Hepatocytes , Keratin-18 , Keratin-19 , Mesenchymal Stem Cells , Phenotype , Wharton Jelly
SELECTION OF CITATIONS
SEARCH DETAIL